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Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in
nonequilibrium steady state �NESS� with sustained concentrations for substrates and products. We show that
the forward and backward cycle times have identical nonexponential distributions: �+�t�=�−�t�. This equation
generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward �p+�
and backward �p−� cycles, kBT ln�p+ / p−� is shown to be the chemical driving force of the NESS, ��. More
interestingly, the moment generating function of the stochastic number of substrate cycle ��t�, �e−���t��, follows
the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When �=�� /kBT, we obtain
the Jarzynski-Hatano-Sasa-type equality �e−��t���/kBT� � 1 for all t, where ��� is the fluctuating chemical work
done for sustaining the NESS. This theory suggests possible methods to experimentally determine the non-
equilibrium driving force in situ from turnover data via single-molecule enzymology.
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Most biochemical reactions in a living cell have nonzero
flux J and nonzero chemical driving force ��. The nonequi-
librium state of such a reaction is sustained by continuous
material and energy exchange with and heat dissipation into
its environment �1�. Hence, to understand the state of a bio-
chemical network in an open environment, it is necessary to
be able to experimentally measure both J and �� in situ. A
large literature exists on measuring J, but none exists on
directly measuring ��. One could in principle compute ��
from in situ measurements of the concentrations of the sub-
strate and product of a reaction if its equilibrium constant is
known �2�. Alternatively, one should be able to obtain ��
from fluctuating cycle kinetics of a single enzyme directly.
This possibility has been recently investigated in term of
stochastic simulations �3�. Here we exam this idea through
an analytical model.

Enzyme kinetics are complex mainly due to the many
possible intermediates in the form of enzyme-substrate com-
plexes. Recent laboratory measurements with high resolution
at the single-molecule level give the waiting time distribu-
tions for enzyme cycles �4�. This motived the present Mar-
kov renewal process �MRP� model, also known as the ex-
tended kinetics model in the theory of motor proteins �5�. In
terms of the MRP, the kinetics of a single enzyme becomes a
stochastic sequence of forward and backward cycles as a
function of time. We shall denote the number of forward and
backward cycles by �+�t� and �−�t�, as shown in Fig. 1.

It is obvious that the cycle time distributions give infor-
mation on the kinetics. In this Rapid Communication we
show that the key nonequilibrium thermodynamic quantity,
��, can be obtained from stochastic data on single-enzyme
cycle ��t���+�t�−�−�t� via two equalities

�� = kBT ln���+�t��/��−�t��� , �1�

�e−��t���/kBT� = 1 " t , �2�

where �¯� is the ensemble average for repeated measure-
ments of ��t� in a steady state. Equation �1� generalizes a
result well known for one-step chemical reactions �1,6�.
Equation �2� is a version of the fluctuation theorem �FT� in
nonequilibrium statistical mechanics. The FT for the prob-
ability distribution of entropy production of a nonequilibrium
steady-state �NESS� was first discovered in deterministic dy-
namical systems �7�. Kurchan, Lebowitz, and Spohn �KLS�
introduced a parallel theory in terms of stochastic dynamics
�8� which is more appropriate for single-enzyme experiments
�4,9,10�. It was shown that the generating function, i.e., an
exponential average, of a work functional W�t� possesses a
certain symmetry in the limit of t→�. Crooks introduced
a heat functional Q�t� and showed that similar symmetry
is valid for all finite t �11�: c��t�=c1−��t� where
c��t�= �e−�Q�t�/kBT�. Since Q�t� and W�t� differ by a stationary
term while both increase without boundy, Crooks’ result im-
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FIG. 1. The solid line illustrates ideal data on single-enzyme
cycling as a function of time, ��t�, which can be decomposed into
�+�t� and �−�t�, shown as dashed and dotted lines. The starting
positions are arbitrary. �T+ and �T− are forward and backward
cycle times.
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mediately yields that of KLS. The symmetry in the generat-
ing function implies the FT for Q �12�.

The symmetry implies that ln�e−Q�t�/kBT�=0. This is analo-
gous to the Jarzynski equality �13�, which is surprising since
�Q�t��=−kBT ln e−�Q�t��/kBT is the mean heat dissipated from
the NESS, which certainly is not equal to 0; it should always
be greater than 0. The Jarzynski equality provides the possi-
bility obtaining a function of state such as the free energy
from a nonstationary heat functional Q�t� with finite t. This
was proposed and experimentally tested for the mechanical
work functional on single biological macromolecules such as
RNA �14,10�.

The difference between the FTs for W�t� in the limit of
infinite t and for Q�t� with any finite t is crucial to real
experiments. In heuristic thermodynamic terms, the work
functional W�t� �8� is related to the ��0 of a reaction and the
heat functional Q�t� �11� to ��. While the former is deter-
mined by the transition rate constants, and hence is experi-
mentally accessible in short time, the latter depends on the
stationary probability. For cyclic enzymatic turnovers, how-
ever, W=Q. Hence, the FT associated with enzyme cycle
kinetics is particularly simple, and experimentally accessible
�3�. Generalizing the Jarzynski equality to open systems, Ha-
tano and Sasa’s equality for the NESS �13� also suggested
the possibility of the computing chemical driving force for
single-molecule chemical reactions in NESS �see �3,15��.

To show Eqs. �1� and �2�, there are two strategies. One is
based on traditional Markov models, i.e., master equations,
for single-enzyme kinetics. Then both equations can be show
as conseqeunces of the existing FTs �8,11�. An alternative,
the more insightful approach is to model the kinetics in terms
of a MRP with cycle kinetics. In our model, we shall show a
surprising equality between the forward and backward cycle
time distributions: �+�	�=�−�	�. With this equality, Eq. �1�
becomes obvious, and Eq. �2� can be shown in elementary
terms, in Eqs. �7�–�11� below.

The equality �+�	�=�−�	� turns out to be a very impor-
tant relation in enzyme kinetics. This is a key result of this
work. It has to do with microscopic reversibility. There is
experimental evidence for it, as well as theoretical models
proving equal mean time ��T+�= ��T−� �16,17�. We shall
give a proof for the equal distribution with sequential en-
zyme kinetics. The proof for more general systems will be
published elsewhere �18�.

The detailed kinetic scheme of an enzyme-catalyzed bio-
chemical reaction A�B is usually very complex �19�. But if
one considers only the net number of steady-state turnovers
from A to B, ��t�, it can be represented by a continuous-time,
discrete-state one-dimensional random walk with cumulative
cycle time distribution functions �±�t� for the forward and
the backward stochastic transition times �T+ and �T−:
�±�0�=0, �±���=1, and �±�t� are nondecreasing. This is a
class of stochastic models known as MRPs �20� which has
wide applications in single-enzyme kinetics and motor pro-
tein stepping �21,5�. See Fig. 2 in which w±�t�= p±�±�t� and
p++ p−=1. p+ �p−� is the eventual probability of the enzyme
binding A �B� and converting it to B �A�. We shall also de-
note w�t�=w+�t�+w−�t�.

We discover that a necessary condition for Eqs. �1� and

�2� is that the cycle time distributions for the forward and
backward steps are equal: �+�t�=�−�t�. We call this the
equality generalized Haldane equation �22�.

The position of the random walker in Fig. 2�b�, ��t�, mod-
els the net number of enzyme turnovers. Let �0=0, ��1,
��2 , . . . ,��� , . . . ���= ±1� be successive increments of the
turnover number, and T0=0, �T1 ,�T2 , . . . ,�T� , . . . ��T
0�
be the corresponding increments in time. Then the probabi-
listic meaning of w±�t� is the joint probability for continuous
�T and binary ��:

w±�t� = Pr���� = ± 1,�T� � t	 �� 
 1� . �3�

The equation �+�t�=�−�t� leads to w±�t�= p±w�t�. That is,
the random variables ��� and �T� are statistically indepen-
dent.

To show the equality �+�t�=�−�t� for forward and back-
ward cycles, we consider a sequential enzyme reaction as
shown in Fig. 3�a� and a corresponding exit problem �23�
shown in Fig. 3�b�. Starting at the central position E, w+�t�
and w−�t� are the cumulative probabilities of reaching B+E
and A+E. Since only the first and last steps are irreversible,

FIG. 2. �a� Schematics for an enzyme reaction converting
substrate A to product B. In a NESS, the concentrations for A and B,
cA and cB, are controlled through feedback by an experimenter.
The cumulative number of B taken out by the time t is denoted by
��t�, −� ���t���. �b� The integer-valued ��t� is most naturally
modeled by a random walk with forward and backward time distri-
butions w+�t� and w−�t� �5�.

FIG. 3. �a� A schematic for an enzyme reaction converting A to
B. The transition time distribution of a single enzyme converting A
to B, w+�t�, and converting B to A, w−�t�, is intimately related to the
exit problem shown in �b� in which u1 and wn are pseudo-first-order
rate constants that depend on the concentrations of A and B, respec-
tively: u1=u1

ocA, wn=wn
ocB. The scheme in �b� has been used to

compute steady-state one-way flux in Hill’s theory on biochemical
cycle kinetics �25,6�.
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w+�t� and w−�t� both have 2n+1 exponential terms with
the same eigenvalues, one of which is 0. Thus both can
be written as a0+a1e−�1t+a2e−�2t+ ¯ +a2ne−�2nt. With
some straightforward algebra, it can be shown that for all
0�m�2n �24�

1

w1w2 ¯ wn

dmw−�0�
dtm =

1

u1u2 ¯ un

dmw+�0�
dtm . �4�

Since the functions w+�t� and w−�t� are completely deter-
mined by these initial conditions, which satisfy the linear
algebraic system, we have

w+�t�
w−�t�

� 

�=1

n �w�

u�
� = e−��/kBT, �5�

independent of t. That is, �−�t�=�+�t�.
The meaning of the equality now becomes clear: We

recall that u1 and wn are pseudo-first-order rate constants:
u1=u1

ocA and wn=wn
ocB. In a chemical equilibrium,

cB

cA
=

u1
ou2 ¯ un−1un

w1w2 ¯ wn−1wn
o , �6�

that is, w+�t�=w−�t�. Therefore, in a chemical equilibrium not
only does the average w+���=w−���, i.e., the forward flux
equals the backward flux, but the detailed kinetics for the
transition time distributions has to be equivalent: There is
absolutely no statistical difference between the forward and
backward reactions. In a NESS when Eq. �6� does not hold
true, w+�t��w−�t�. But the difference is only in the total
probability p+=w+��� and p−=w−���, the distribution func-
tions �+�t�=�−�t� still hold true. This equality is essential to
the KLS symmetry below. It is known that microscopic re-
versibility has to be satisfied even when a mesoscopic system
is in a nonequilibrium steady state �8�.

For the number k of successive renewal events �forward
plus backward turnovers� within time �0, t�, let us denote
��k ,Tk�=
�=1

k ���� ,�T��. The moment-generating function
for ��t� is

g��t� � �e−���t�� = 

n=−�

�

e−�n

k=0

�

Pr��k = n,Tk � t,Tk+1 
 t	

�7�

=

k=0

� � 

n=−k

k

e−�nPr��k = n	�
�Pr�Tk � t,Tk+1 
 t	 �8�

=

k=0

�

�p+e−� + p−e��kPr�Tk � t,Tk+1 
 t	 .

�9�

Equation �8� is obtained because of the independence
between �k and Tk. Then from Eq. �9� we have the KLS
symmetry

g��t� = g�*−��t� " t , �10�

where �*=ln�p+ / p−�. Furthermore,

g�*�t� � �e−��t���/kBT� = g0�t� = 1, �11�

if ln�p+ / p−�=�� /kBT holds true. We recognize that ��t���
is the external chemical work done to the system in a NESS.
Hence Eq. �11� is analogous to the Jarzynski equality for a
cycle.

If we let t→� in Eq. �5�, we have ln�p+ / p−���*

=�� /kBT, which is needed in deriving Eq. �11�. This gener-
alizes the well-known result for single-step chemical reac-
tions �25,6� to any complex enzyme reaction cycle.

We are now also in a position to show Eq. �1�. The mean
number of net turnovers can be computed from the g��t�
given in Eq. �9�:

���t�� = ��+�t�� − ��−�t�� = − �dg��t�
d�

�
�=0

�12�

=�p+ − p−�

k=0

�

k Pr�Tk � t,Tk+1 
 t	 �13�

=�p+ − p−�

� �mean no . of cycles in time t� . �14�

Therefore,
��+�

��−� =
p+

p−
. Furthermore, in the limit of large t �23�,

���t����p+− p−�t / �T1�, where �T1�=�0
�t dw�t� is the mean

time for one cycle, forward or backward. When p+= p−, the
steady-state flux J=limt→����t�� / t=0 as expected. When
p+
 p−, J
0.

Studying enzyme-catalyzed biochemical reactions
in situ requires methods for measuring ��, the NESS
chemical driving force. Currently none exists. We propose
obtaining �� from stochastic cycle data of a single-enzyme
molecule, ��t�, via �i� an equality similar to that of
Jarzynski and Hatano-Sasa, �e−��t���/kBT� � 1; or simply �ii�
kBT ln���+�t�� / ��−�t���. We developed a MRP model for en-
zyme cycles with arbitrary complex mechanism, and found
an equality between the forward and backward cycle time
distributions based on microscopic reversibility. This equal-
ity is a generalization of what is known as the Haldane rela-
tion for reversible enzyme kinetics and recent results in �17�.
The model enables us to establish a FT and above equalities
�i� and �ii� for any t. Noting that �1/ t����t�� � J, one thus
obtains both the flux J and the driving force �� for a reac-
tion in a NESS from the fluctuating ��t�. The statistical ac-
curacies associated with these measurements were discussed
in �3�.
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