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Generalized Haldane equation and fluctuation theorem in the steady-state cycle kinetics
of single enzymes

PHYSICAL REVIEW E 74, 010902(R) (2006)

Hong Qian™
Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA

X. Sunney Xie'
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 1 August 2005; revised manuscript received 13 February 2006; published 12 July 2006)

Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in
nonequilibrium steady state (NESS) with sustained concentrations for substrates and products. We show that
the forward and backward cycle times have identical nonexponential distributions: ®,()=®_(z). This equation
generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p.,)
and backward (p_) cycles, kgT In(p,/p_) is shown to be the chemical driving force of the NESS, Au. More
interestingly, the moment generating function of the stochastic number of substrate cycle (1), (¢ "), follows
the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When N\=Au/kpT, we obtain
the Jarzynski-Hatano-Sasa-type equality (¢~*2#/ksTy = 1 for all ¢, where vAp is the fluctuating chemical work
done for sustaining the NESS. This theory suggests possible methods to experimentally determine the non-

equilibrium driving force in sifu from turnover data via single-molecule enzymology.
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Most biochemical reactions in a living cell have nonzero
flux J and nonzero chemical driving force Au. The nonequi-
librium state of such a reaction is sustained by continuous
material and energy exchange with and heat dissipation into
its environment [1]. Hence, to understand the state of a bio-
chemical network in an open environment, it is necessary to
be able to experimentally measure both J and Au in situ. A
large literature exists on measuring J, but none exists on
directly measuring Au. One could in principle compute Ay
from in situ measurements of the concentrations of the sub-
strate and product of a reaction if its equilibrium constant is
known [2]. Alternatively, one should be able to obtain Au
from fluctuating cycle kinetics of a single enzyme directly.
This possibility has been recently investigated in term of
stochastic simulations [3]. Here we exam this idea through
an analytical model.

Enzyme kinetics are complex mainly due to the many
possible intermediates in the form of enzyme-substrate com-
plexes. Recent laboratory measurements with high resolution
at the single-molecule level give the waiting time distribu-
tions for enzyme cycles [4]. This motived the present Mar-
kov renewal process (MRP) model, also known as the ex-
tended kinetics model in the theory of motor proteins [5]. In
terms of the MRP, the kinetics of a single enzyme becomes a
stochastic sequence of forward and backward cycles as a
function of time. We shall denote the number of forward and
backward cycles by v,(r) and v_(r), as shown in Fig. 1.

It is obvious that the cycle time distributions give infor-
mation on the kinetics. In this Rapid Communication we
show that the key nonequilibrium thermodynamic quantity,
A, can be obtained from stochastic data on single-enzyme
cycle v(t)=v,(t)—v_(r) via two equalities
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Ap = kgT In[{v, (1))/(v_(1)], (1)

<e—v(t)AM/kBT> =1 \4 t, (2)

where (---) is the ensemble average for repeated measure-
ments of »(r) in a steady state. Equation (1) generalizes a
result well known for one-step chemical reactions [1,6].
Equation (2) is a version of the fluctuation theorem (FT) in
nonequilibrium statistical mechanics. The FT for the prob-
ability distribution of entropy production of a nonequilibrium
steady-state (NESS) was first discovered in deterministic dy-
namical systems [7]. Kurchan, Lebowitz, and Spohn (KLS)
introduced a parallel theory in terms of stochastic dynamics
[8] which is more appropriate for single-enzyme experiments
[4,9,10]. Tt was shown that the generating function, i.e., an
exponential average, of a work functional W(r) possesses a
certain symmetry in the limit of t— . Crooks introduced
a heat functional Q(r) and showed that similar symmetry
is wvalid for all finite ¢ [I11]: c¢\(f)=c,_,\(r) where
ex(0)=(eMCWksTy Since O(r) and W(r) differ by a stationary
term while both increase without boundy, Crooks’ result im-

v = v, (V)

FIG. 1. The solid line illustrates ideal data on single-enzyme
cycling as a function of time, »(r), which can be decomposed into
v,(r) and v_(z), shown as dashed and dotted lines. The starting
positions are arbitrary. AT, and AT_ are forward and backward
cycle times.
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mediately yields that of KLS. The symmetry in the generat-
ing function implies the FT for Q [12].

The symmetry implies that In{e"2®/%s7)=0. This is analo-
gous to the Jarzynski equality [13], which is surprising since
(0(t)y=—kpT In e~ VKT s the mean heat dissipated from
the NESS, which certainly is not equal to 0; it should always
be greater than 0. The Jarzynski equality provides the possi-
bility obtaining a function of state such as the free energy
from a nonstationary heat functional Q(¢) with finite z. This
was proposed and experimentally tested for the mechanical
work functional on single biological macromolecules such as
RNA [14,10].

The difference between the FTs for W(r) in the limit of
infinite 7 and for Q(¢r) with any finite 7 is crucial to real
experiments. In heuristic thermodynamic terms, the work
functional W(¢) [8] is related to the Au® of a reaction and the
heat functional Q(¢) [11] to Au. While the former is deter-
mined by the transition rate constants, and hence is experi-
mentally accessible in short time, the latter depends on the
stationary probability. For cyclic enzymatic turnovers, how-
ever, W=0Q. Hence, the FT associated with enzyme cycle
kinetics is particularly simple, and experimentally accessible
[3]. Generalizing the Jarzynski equality to open systems, Ha-
tano and Sasa’s equality for the NESS [13] also suggested
the possibility of the computing chemical driving force for
single-molecule chemical reactions in NESS (see [3,15]).

To show Egs. (1) and (2), there are two strategies. One is
based on traditional Markov models, i.e., master equations,
for single-enzyme kinetics. Then both equations can be show
as consegeunces of the existing FTs [8,11]. An alternative,
the more insightful approach is to model the kinetics in terms
of a MRP with cycle kinetics. In our model, we shall show a
surprising equality between the forward and backward cycle
time distributions: ©,(7)=0_(7). With this equality, Eq. (1)
becomes obvious, and Eq. (2) can be shown in elementary
terms, in Egs. (7)—(11) below.

The equality @,(7)=0_(7) turns out to be a very impor-
tant relation in enzyme kinetics. This is a key result of this
work. It has to do with microscopic reversibility. There is
experimental evidence for it, as well as theoretical models
proving equal mean time (AT,)=(AT_) [16,17]. We shall
give a proof for the equal distribution with sequential en-
zyme kinetics. The proof for more general systems will be
published elsewhere [18].

The detailed kinetic scheme of an enzyme-catalyzed bio-
chemical reaction A= B is usually very complex [19]. But if
one considers only the net number of steady-state turnovers
from A to B, 1(¢), it can be represented by a continuous-time,
discrete-state one-dimensional random walk with cumulative
cycle time distribution functions O, (r) for the forward and
the backward stochastic transition times AT, and AT_:
0.(0)=0, O_,()=1, and O_(¢) are nondecreasing. This is a
class of stochastic models known as MRPs [20] which has
wide applications in single-enzyme kinetics and motor pro-
tein stepping [21,5]. See Fig. 2 in which w,()=p.0.(r) and
p.+p_=1. p, (p_) is the eventual probability of the enzyme
binding A (B) and converting it to B (A). We shall also de-
note w(t)=w,()+w_(1).

We discover that a necessary condition for Egs. (1) and
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FIG. 2. (a) Schematics for an enzyme reaction converting
substrate A to product B. In a NESS, the concentrations for A and B,
cy and cp, are controlled through feedback by an experimenter.
The cumulative number of B taken out by the time ¢ is denoted by
v(t), —o0 <w(t)<o. (b) The integer-valued »(z) is most naturally
modeled by a random walk with forward and backward time distri-
butions w,(r) and w_(r) [5].

(2) is that the cycle time distributions for the forward and
backward steps are equal: O,(r)=0_(r). We call this the
equality generalized Haldane equation [22].

The position of the random walker in Fig. 2(b), »(¢), mod-
els the net number of enzyme turnovers. Let v,=0, A,
Av,,...,Av,,... (Av==%1) be successive increments of the
turnover number, and T,=0, AT,,AT,,...,AT,,... (AT=0)
be the corresponding increments in time. Then the probabi-
listic meaning of w_(¢) is the joint probability for continuous
AT and binary Av:

w.(t)=Pr{Av,= £ 1,AT, <1t} (£ =1). (3)

The equation O, (1)=0_(z) leads to w.(r)=p.w(). That is,
the random variables Av, and AT, are statistically indepen-
dent.

To show the equality ©,(r)=0_(¢) for forward and back-
ward cycles, we consider a sequential enzyme reaction as
shown in Fig. 3(a) and a corresponding exit problem [23]
shown in Fig. 3(b). Starting at the central position E, w,(¢)
and w_(7) are the cumulative probabilities of reaching B+E
and A+E. Since only the first and last steps are irreversible,

@ 7
E"ﬁE B AN 1N "ﬂE hEI:
wp 1w, T2 g o Wop B wicy
®) w. ()

Wigs HBai o Un Uy Uy g, U,
R S B SR S E
n-1 1

n n-1
w.(t)

FIG. 3. (a) A schematic for an enzyme reaction converting A to
B. The transition time distribution of a single enzyme converting A
to B, w,(7), and converting B to A, w_(z), is intimately related to the
exit problem shown in (b) in which u; and w, are pseudo-first-order
rate constants that depend on the concentrations of A and B, respec-
tively: u;=ufc,, w,=wicp. The scheme in (b) has been used to
compute steady-state one-way flux in Hill’s theory on biochemical
cycle kinetics [25,6].
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w,(f) and w_(¢) both have 2n+1 exponential terms with
the same eigenvalues, one of which is 0. Thus both can
be written as ayg+ae M +ae '+ +ay,e” . With
some straightforward algebra, it can be shown that for all
0=m=2n [24]

1 dw (0 1

wiwyew, df"

d"w,(0)

uuy - u, dt"

(4)

Since the functions w,(z) and w_(¢) are completely deter-
mined by these initial conditions, which satisfy the linear
algebraic system, we have

W+_(t)E - (ﬂ)_ ~AplkgT
W) )T )

independent of 7. That is, O@_(1)=0,(z).

The meaning of the equality now becomes clear: We
recall that u; and w, are pseudo-first-order rate constants:
uy=uic, and w,=wicp. In a chemical equilibrium,

o .o
Cp_ Mt un—luno’ 6)
CA WiWo "Wy W,
that is, w, () =w_(t). Therefore, in a chemical equilibrium not
only does the average w,()=w_(), i.e., the forward flux
equals the backward flux, but the detailed kinetics for the
transition time distributions has to be equivalent: There is
absolutely no statistical difference between the forward and
backward reactions. In a NESS when Eq. (6) does not hold
true, w,(¢) #w_(r). But the difference is only in the total
probability p,=w,(%) and p_=w_(e), the distribution func-
tions ®_(r)=0_(7) still hold true. This equality is essential to
the KLS symmetry below. It is known that microscopic re-
versibility has to be satisfied even when a mesoscopic system
is in a nonequilibrium steady state [8].

For the number k of successive renewal events (forward
plus backward turnovers) within time [0,7], let us denote
(v, T)==%_,(Av,AT,). The moment-generating function
for v(1) is

e = (™M= ™Y Py =nT,=1.T;,, > 1}
n=—owo k=0
(7)
© [ k
(3 e
k=0 \ n=—k
WPHT, = 1.T,0, > 1} (8)

©

= (p.e ™ +p_MPHT, =1, T\, > 1}.
k=0

)
Equation (8) is obtained because of the independence

between v, and T,. Then from Eq. (9) we have the KLS
symmetry
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o =g\ Vi, (10)
where N =In(p,/p_). Furthermore,
gn(t) = (e ATy = g (1) = 1, (11)

if In(p,/p_)=Au/kgT holds true. We recognize that v(f)Au
is the external chemical work done to the system in a NESS.
Hence Eq. (11) is analogous to the Jarzynski equality for a
cycle.

If we let t—o in Eq. (5), we have In(p,/p_)=\"
=Au/kgT, which is needed in deriving Eq. (11). This gener-
alizes the well-known result for single-step chemical reac-
tions [25,6] to any complex enzyme reaction cycle.

We are now also in a position to show Eq. (1). The mean
number of net turnovers can be computed from the g,()
given in Eq. (9):

dg,(1)

(0) = (94(0) = (v-(0) = [ - ] (12)
A=0

[

=(p, —p) 2 kP{T, =1,T},, > 1} (13)
k=0

=(p+-p-)

X (mean no. of cycles in time 7). (14)

<V+>
Therefore, m:i—i. Furthermore, in the limit of large 7 [23],

(W)= (p,—p_)t/{Ty), where (T})=[;tdw(t) is the mean
time for one cycle, forward or backward. When p,=p_, the
steady-state flux J=lim,_..(v(r))/t=0 as expected. When
p.>p_, J>0.

Studying enzyme-catalyzed biochemical reactions
in situ requires methods for measuring A, the NESS
chemical driving force. Currently none exists. We propose
obtaining Au from stochastic cycle data of a single-enzyme
molecule, »(z), via (i) an equality similar to that of
Jarzynski and Hatano-Sasa, (e-"W2#/sT)y = 1. or simply (ii)
kgT In[{v,(1))/{v_(1))]. We developed a MRP model for en-
zyme cycles with arbitrary complex mechanism, and found
an equality between the forward and backward cycle time
distributions based on microscopic reversibility. This equal-
ity is a generalization of what is known as the Haldane rela-
tion for reversible enzyme Kinetics and recent results in [17].
The model enables us to establish a FT and above equalities
(i) and (ii) for any 7. Noting that (1/£)(¥(t)) = J, one thus
obtains both the flux J and the driving force Au for a reac-
tion in a NESS from the fluctuating v(¢). The statistical ac-
curacies associated with these measurements were discussed
in [3].
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